Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.
نویسندگان
چکیده
The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision.
منابع مشابه
Experiments on Different Recurrent Neural Networks for English-hindi Machine Translation
Recurrent Neural Networks are a type of Artificial Neural Networks which are adept at dealing with problems which have a temporal aspect to them. These networks exhibit dynamic properties due to their recurrent connections. Most of the advances in deep learning employ some form of Recurrent Neural Networks for their model architecture. RNN's have proven to be an effective technique in applicati...
متن کاملEnglish-hindi Using Rnn’s
Recurrent Neural Networks are a type of Artificial Neural Networks which are adept at dealing with problems which have a temporal aspect to them. These networks exhibit dynamic properties due to their recurrent connections. Most of the advances in deep learning employ some form of Recurrent Neural Networks for their model architecture. RNN's have proven to be an effective technique in applicati...
متن کاملSeamless Integration and Coordination of Cognitive Skills in Humanoid Robots: A Deep Learning Approach
This study investigates how adequate coordination among the different cognitive processes of a humanoid robot can be developed through end-to-end learning of direct perception of visuomotor stream. We propose a deep dynamic neural network model built on a dynamic vision network, a motor generation network, and a higher-level network. The proposed model was designed to process and to integrate d...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human brain mapping
دوره شماره
صفحات -
تاریخ انتشار 2018